Analysis of trigonometric implicit Runge–Kutta methods

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective order strong stability preserving RungeKutta methods

We apply the concept of effective order to strong stability preserving (SSP) explicit Runge–Kutta methods. Relative to classical Runge–Kutta methods, effective order methods are designed to satisfy a relaxed set of order conditions, but yield higher order accuracy when composed with special starting and stopping methods. The relaxed order conditions allow for greater freedom in the design of ef...

متن کامل

Implicit Alternating Direction Methods

in general plane regions and with respect to linear boundary conditions, is a classical problem of numerical analysis. Many such boundary value problems have been solved successfully on high-speed computing machines, using the (iterative) Young-Frankel "successive overrelaxation" (SOR) method as defined in [l] and [2], and variants thereof ("line" and "block" overrelaxation). For this method, e...

متن کامل

Analysis of a Very Massive DA White Dwarf via the Trigonometric Parallax and Spectroscopic Methods

By two different methods, we show that LHS 4033 is an extremely massive white dwarf near its likely upper mass limit for destruction by unstable electron

متن کامل

Explicit and implicit methods for probabilistic common-cause failure analysis

The occurrence of a probabilistic common-cause failure (PCCF) in a system results in failures of multiple system components with different probabilities. A PCCF can be caused by external shocks or propagated failures originating from some components within the system. This paper proposes an explicit method and an implicit method to analyze the reliability of systems subject to internal or exter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2007

ISSN: 0377-0427

DOI: 10.1016/j.cam.2005.12.006